Global-Statistics-Based Active Contour Model for Image Segmentation
نویسندگان
چکیده
This paper presents a localand global-statistics-based active contour model for image segmentation by applying the globally convex segmentation method. We first propose a convex energy functional with a local-Gaussian-distribution-fitting termwith spatially varyingmeans and variances and an auxiliary global-intensity-fitting term. A weight function that varies dynamically with the location of the image is applied to adjust the weight of the global-intensity-fitting term dynamically. The weighted total variation norm is incorporated into the energy functional to detect boundaries easily. The split Bregman method is then applied to minimize the proposed energy functional more efficiently. Our model has been applied to synthetic and real images with promising results. With the local-Gaussian-distribution-fitting term, our model can also handle some texture images. Comparisons with other models show the advantages of our model.
منابع مشابه
ناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کاملA Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations
In this paper, we develop a novel region-based approach to snakes designed to optimally separate the values of certain image statistics over a known number of region types. Multiple sets of contours deform according to a coupled set of curve evolution equations derived from a single global cost functional. The resulting active contour model, in contrast to many other edge and region based model...
متن کاملA New Algorithm for Skin Lesion Border Detection in Dermoscopy Images
Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...
متن کاملGlobal Minimizers of The Active Contour/Snake Model
The active contour/snake model [9, 2, 10] is one of the most wellknown segmentation variational models in image processing. However this model suffers from the existence of local minima which makes the initial guess critical for getting satisfactory results. In this paper, we propose to solve this problem by finding global minimizers of the active contour model following the original work of Ch...
متن کاملHybrid Medical Image Segmentation based on Fuzzy Global Minimization by Active Contour Model
This paper provides new hybrid medical image segmentation based on Global Minimization by Active Contour (GMAC) method and Spatial Fuzzy C Means Clustering method (SFCM) tailored to CT imaging applications. GMAC is the unification of image segmentation and image denoising, which is a combination of snake, Rudin-Osher denoising and the Mumford Shah model. Here globalization of contour is applied...
متن کامل